

智能船舶规范与IMO MASS CODE进展

Development of CCS Rules for Intelligent Ships and IMO MASS Code

Sun Wu,CCS Shanghai Rules and Research Institue
Ning Bo, 2023.07.18

CCS Rules for Intelligent Ships

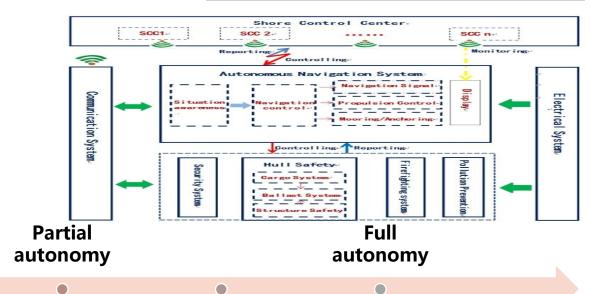
2

MSA Provisional Code for Test and Survey of Autonomous Navigation of Ships

3

IMO MASS Code

1 CCS Rules for Intelligent Ships



In 2015, Based on the concept of Intelligentization, through Risk Assessment, CCS issued 1st version of "Rules for Intelligent Ships"

Decision

support

- The Rules focus on Functions and Systems
- The Rules propose a "1+N" model
 - 1 -- ship integrated digital platform
 - N- functions (class notations)

Navigation

Machinery

Efficiency

Ship Integrated digital Platform

Maintenence

Management

integration

digitalization

Ship-shore interaction

Semiautonomy (human surveillance)

Class Notations for Intelligent applications

After 7 years of development, CCS has developed a series of Class Notations

according to the "1+N" model

i-Ship (Ai ,Ri, Nx, Hx, Mx, Ex, Cx, I, Dx, SRx)

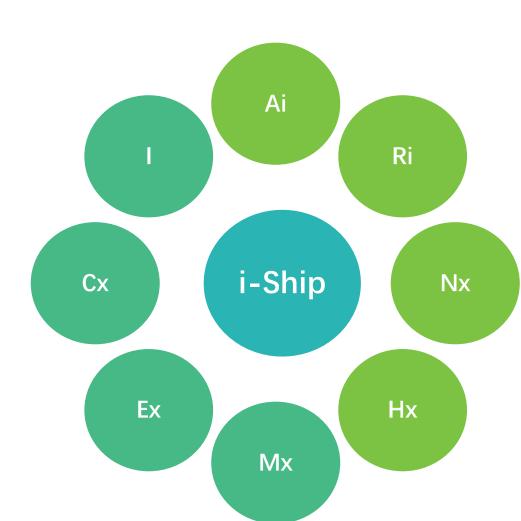
Ai — Autonomous operation

Ri — Remote Control

Nx — Navigation

Hx — Hull

Mx — Machinery


Ex — Energy management

Cx — Cargo handling

I — Integrated digital platform

Dx—Dreger

SRx—Science Research

Practices of China

- In the past 7 years, **more than 200 ships** have passed CCS drawing approval, survey and certification, and obtained the Class notations of Intelligent Ship (i-Ship). The ship types not only cover bulk carrier, Tank and container ship, but also include LNG ships, polar icebreaking research ships, PCTC and others.
- > 18 models of intelligent systems obtained CCS approval.
- CCS has established a simulation laboratory of collision avoidance algorithm.
- Requirements and performance for ship video sensing systems including lidar, infrared system etc.

2 MSA Provisional Code for Test and Survey of Autonomous Navigation of Ships

Goal:

Ensure the safety of ship with autonomous/remote control functions.

General

Application

Ch.1

Ch.2

中华人民共和国船舶技术法规

MSA 2023 年 第 1 号 公告

Autonomous Navigation

Ch.3

Remote control center

Ch.4

Process of trial

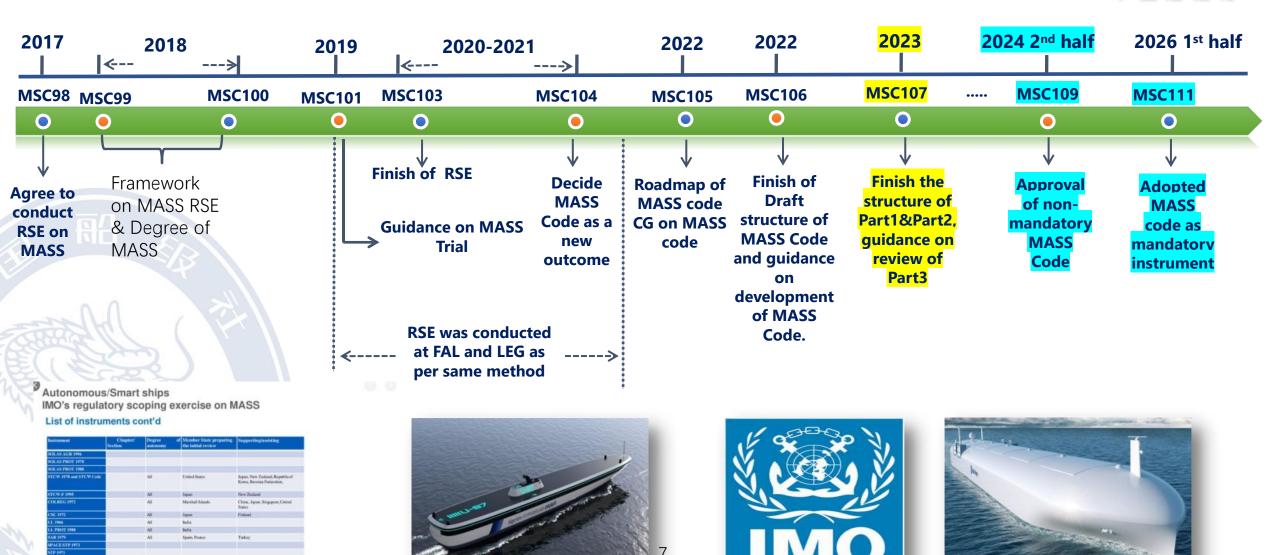
Ch.5

船舶自主航行试验技术与检验 暂行规则

2023

2023年4月3日公布

2023年5日1日起施行



至中华人民共和国交通运输部批准中华人民共和国海事局公布

3. IMO MASS CODE

TRANSPORT

Framework of MASS Code

Part 1 GENERAL	2.5 System design principles <mark>(EC)</mark>	3.7 Management if Safe Operations <mark>(Germany)</mark>
1.1 Introduction (Purpose, Principles) (Marshall island)	2.6 Software principles <mark>(UK)</mark>	3.9 Security <mark>(Spain)</mark>
1.2 Application <mark>(Danmark</mark>)	2.7 Connectivity <mark>(China)</mark> 2.7bis Alert management <mark>(Norway)</mark>	3.10 Search and Rescue <mark>(Spain)</mark>
1.3 Code Structure and relationship to other IMO Instruments(to be decided)	2.8 Human element <mark>(ITF)</mark>	3.11 Cargo Handling
1.4 Terminology and Definitions <mark>(to be decided)</mark>	Part 3 GOALS, FUNCTIONAL REQUIREMENTS AND PROVISIONS	3.12 Personal Safety and comfort(ITF)
1.5 Certificate and Survey(Danmark)	3.1 Navigation <mark>(Japan)</mark>	3.13 Towing and Mooring <mark>(Canada)</mark>
Part 2 MAIN PRINCIPLES FOR MASS AND MASS FUNCTIONS	3.2 Remote Operations <mark>(UK)</mark>	3.14 Marine Eengineering/Machinery Installations <mark>(USA)</mark>
2.1 Operational context(Germany)	3.3 Communications (China)	3.15 Electrical and electronic engineering <mark>(USA)</mark>
2.2 Safe states for the ship(Germany)	3.4 Subdivision, Stability and Watertight Integrity	3.16 Maintenance and Repair <mark>(Australia)</mark>
2.3 Functions Required for MASS(TBA)	3.5 Fire Safety <mark>(Norway)</mark>	3.17 Emergency Response <mark>(Korea)</mark>
2.4 Risk Assessment <mark>(China)</mark>	3.6 Life-Saving Appliances and Equipment (Canada)	Annex Interim guidelines for MASS trial

IMO MASS Code (Progress)

MASS Code was developed by splinter groups leading by volunteer IMO members in CG on MASS Code and discussed by following work groups:

- MSC WG on MASS
- CG on MASS
- MSC ISWG on MASS.
- MSC-LEG-FAL JWG: discussing common issues related to three committees.

Points were agreed:

- Follow GBS methodology(MSC.1/Circ.1394/Rev.2), covers goal and functional Requirements(Tier 1 and Tier II)
- > a supplement to other IMO instruments, such as SOLAS, provides a regulatory framework for the performance of remote control and autonomous operation of key functions, as applicable
- Code should be implemented for individual remotely controlled or autonomous functions even where persons are on board to handle other functions.
- > ensure achievement of a level of safety at least equivalent to that expected of a conventional ship;

IMO MASS Code (progress)

Points were agreed(continue):

- > to safely coexist without impeding or negatively impacting each other
- > Apply to cargo ships at the begin then consider to apply to passenger ships
- > A ship may move between modes of operation during one voyage
- ➤ there should be a human master responsible for a MASS, regardless of mode of operation or degree or level of autonomy, the master of a MASS should have the means to intervene when necessary.
- > on the circumstances where a master of a MASS could be responsible for several MASS was needed
- > several masters may be responsible for a MASS on a single voyage, under certain conditions. And that only one master should be responsible at any given time
- there was **no need to amend the COLREGs** and that Convention can be applied in full to any MASS but that the MASS Code needed to address how COLREGs need to be applied to MASS.

IMO MASS Code (progress)

Points were agreed(continue):

no specific risk assessment methodology should be recommended to be used in the MASS Code

Points to be agreed:

- ➤ Definition of MASS, Terminology such as operational envelope(OE), Modes of operation, Concept of Operations etc.
- ➤ Competence and qualification of MASS Crew
- ➤ Pilot for MASS
- ➤ SAR responsibility of MASS
- >How to verify the performance of MASS system
- ightharpoonup jurisdiction and responsibility with respect to the location of ROCs

>.....

Joining Hands in Promoting the Development of Intelligent Ships

No.1234, Pudong Avenue, Shanghai 200135, China

Tel: (021)61089538

E-mail: wsun@ccs.org.cn